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Inconsistent Mathematics

• Mathematics has traditionally been the hallmark of a science that 
proceeds by proof, and so is free of falsehoods and more so of 
inconsistency.

• Changing the basic logic used in mathematics to a paraconsistent logic 
makes mathematics in a weak sense paraconsistent: If there were to 
turn up some inconsistency in mathematics, it would not explode. But 
since there are no inconsistencies expected to arise there, a 
mathematician will not be inclined to forego the deductive power of 
standard First Order Logic.

• Changing set theory to a paraconsistent set theory makes mathematics 
paraconsistent in a stronger sense, since now the basic axioms are 
taken as the inconsistent axioms of naive set theory. There are now real 
inconsistencies – may be even inconsistent objects – in mathematics 
and the logic, therefore, has to be a paraconsistent one.

• And the inconsistency may not only reside with some elusive set 
theoretic entities, but there may be inconsistent numbers as well!
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Inconsistent Mathematical Objects

• To have an inconsistent number theory means at least that within the 
theorems of number theory there is some sentence A with A being a 
theorem and ¬A being a theorem at the same time. 

• Supposedly this corresponds to some object/number o being an 
inconsistent object.

• So inconsistent mathematics is connected to inconsistent ontology. Its 
underlying logic has to be paraconsistent.

• The problems with having F(a) and ¬F(a) for some object a seem not 
so pressing if a is some mathematical object than a being a physical 
object [see Chap. 17]: Mathematical objects are either non-existent –
mere theory, taken instrumentally – or they are in some elusive 
Platonic realm where strange things may well happen.

• If on the other hand one is a reductionist realist about mathematics 
(mathematics being about structures of reality or mathematical entities 
rather being concrete entities dealt with by mereology) then 
inconsistent mathematics is as problematic as your cat being (wholly) 
black and not being (wholly) black at the same time.
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Inconsistent Mathematical Objects (II)

• Philosophers when concerned with mathematics focus on number 
theory, since the ontological questions of mathematics ("What and 
where are mathematical objects?", "Are there infinite sets?"...) and the 
epistemological questions of mathematics ("How do we know of 
numbers?", "Is mathematics merely conventional?"...) do arise already 
with number theory.

• Taking set and model theory as part of logic anyway, logicians are also 
mainly concerned with number, since a lot of meta-logical theorems 
make us of the device of arithemetization.

• The same goes for the general theory of automata and computability.
• We follow this focus here and so this chapter concerns itself mostly 

with arithmetic. Set theory as part of logic is deal with in Chap. 11.
• This may not be enough for a mathematician trying to assess the power 

of inconsistent mathematics. She looks for inconsistent theories at least 
of the power of the calculus. There are actually such theories, e.g. 
presented by Chris Mortensen [see Further Reading].
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Non-Standard Arithmetic

• One of the most fundamental mathematical theories is arithmetic (as 
given for instance by the Peano axioms).

• Given its first order representation there are a lot of well-known 
theorems about arithmetic (e.g., arithmetic being incomplete).

• Given Compactness of FOL one can prove that there are non-standard 
models of arithmetic, which contain additional numbers over and 
above the natural numbers. These additional numbers behave 
consistently, however. Consistency provides them in the first place.

• Inconsistent arithmetic may concern itself with the opposite deviance: 
Having arithmetics where there are less numbers than in standard
arithmetic.

• This is of outmost philosophical interest, since the infinite is a really 
problematic concept leading to the ever larger cardinalities of "Cantor's 
paradise", and finitism (in the sense of the assumption that there are 
only finitely many objects, even of mathematics) is therefore an option 
worth exploring and pursuing.
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Arithmetic

• One has to distinguish a first order representation of arithmetic from a 
second order arithmetic. We are concerned mainly with first order 
representations.

• In distinction to an axiomatic arithmetic theory like Peano Arithmetic 
there is the arithmetic N (being the set of true first order arithmetic 
sentences in the standard interpretation).

• Many of the limitative theorems of meta-logic proceed by having a 
formal system that includes arithmetic and thus (by Gödelization or 
arithmetization) is able to represent its own syntax and thus recursive 
sets like the set containing pairs of proof numbers and numbers of the 
thus proven sentence.

• N is negation complete (either A or ¬A is in N), not axiomatisable, not 
decidable, and, of course, infinitely large.
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Arithmetic R#

• Robert Meyer was the first to give a non-triviality proof of a Relevant 
(paraconsistent) arithmetic. 

• The system R# is an extension of the first oder version of Relevant 
logic R [see Chap. 4] with axioms mirroring those of Peano arithmetic 
save that the "⊃ " in them has been replaced by the Relevant "→". 
Induction is present as a rule.

• Taking the logic RM3 [see Chap. 9] gives us RM3#.
• One can extend that system with the ω-rule (to derive a generalization 

from infinitely many instances), this is R## or RM3##.
• R# is non-trivial in that 0=1 is not provable.
• This non-triviality can be established by finitistic methods.
• Modus Ponens for "⊃ " fails in R#. If it was valid, Peano arithemetic 

would be a subsystem of R#.
• RM3 or R may not be one's favourite logics, however, so we look here 

at inconsistent arithmetic in general, presupposing some basic 
paraconsistent logic like LP.
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Inconsistent Arithmetics
• Inconsistent Arithemtics that are finite may have any finite size you 

like. They contain one largest number. Since we do not know which 
number really is the largest we may assume that one of these 
arithmetics is true, although we don't know which. Which one it is is 
not that important, since all these arithmetics have common properties:

• Let n be some natural number, then let Nn be a set of arithmetic 
sentences. These sets have the following properties [cf. (Priest 1994)]:

(i) N ⊂ Nn.
(ii) Nn is inconsistent.
(iii) A∈ Nn for a (negated) equation A concerning numbers < n

if and only if A∈ N.
(iv) Nn is decidable.
(v) Nn is representable in Nn (thus we have a Nn truth predicate).
(vi) For the proof predicate B( ) of Nn every instance of 

B("A") ⊃ A is in Nn.
(vii) If A is not a theorem of Nn ¬B("A")∈ Nn.
(viii) For the Gödel sentence G for Nn G∈ Nn and ¬G∈ Nn.
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Inconsistent Arithmetics (II)
• A inconsistent arithmetic Nn thus has quite remarkable properties:

- by (i) we have that it is complete, since N is.
- by (ii) and (viii) we have, of course, that it is inconsistent.
- by (iv) it has all the nice properties that N does not have, although Nn
is complete!
- by (v) we can in the language of arithmetic define a truth predicate 
for that very same language.
- by (vi) Nn has an ordinary proof predicate.
- by (vii) in conjunction with (iii) we have not only that Nn is not trivial 
(by excluding some the equations that are excluded by N), but that this 
non-triviality can be established within Nn itself.

• How do we get this?
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Inconsistent Arithmetics (III)

• Proof Outline: 
- A theory with less numbers than N can have less counterexample to a 
given arithmetic sentence. Thus it contains at most more sentences (as 
true). This holds in general (called "Collapsing Lemma"). Therefore 
(i). So we do not lose any of the power of N by switching to Nn. 
- Since N is negation complete adding any sentence (as true) means 
adding a sentence for which the negation is already in N. Thus the 
resulting theory contains for at least one A, A and ¬A. Thus (ii). This 
means that the logic of these arithmetic theories has to be a 
paraconsistent logic.
- Representability of truth is a consequence of (iv) and (i). The same 
holds for the representability of the proof predicate, (vi). Once the 
proof predicate is representable in the decidable theory Nn we can 
represent non-provability, and thus have (vii) and finally (viii). 
- (iii) is the most interesting property and results from the way the 
domain of a corresponding model is constructed:
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Inconsistent Arithmetics (IV)

• A model of a theory Nn is constructed as a filtering of an ordinary 
arithmetic model.

• In general one can reduce the cardinality of some domain by 
substituting for the objects equivalence classes given some equivalence 
relation (i.e. instead of objects o1, o2 ... we have [o1], [o2]...). The 
equivalence classes provide then the substitute objects. Since the 
objects within the equivalence class are equivalent in the sense of 
interest in the given context the predicates still apply (now to the 
substitute object).

• The trick in case of Nn is to chose the filtering which puts every 
number < n into its equivalence class, and nothing else; and puts all 
numbers ≥ n into n's equivalence class. 

• As a result of this for x < n the standard equations are true (of [x]), 
while in case of y ≥ n everything that could be said of such a y is true 
of [n]. So we have immediately  n = n (by identity) and n = n + 1 
(since for y = n + 1 in N this is true). 
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Inconsistent Arithmetics (V)

• The domain of a theory Nn so is of cardinality n.
• n now is an inconsistent object of  Nn. 
• If for the moment we picture the successor function by arrows we can 

picture the structure of a model of Nn thus:
0 → 1 → ... → n →

↑ ↓
←

Such models are called "heap models".
• The logic modelling  Nn has to be paraconsistent. And is has to have 

restrictions on standard first oder reasoning as well:
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Inconsistent Arithmetics (VI)

• (=E) cannot hold for n of Nn if triviality is to be avoided:

1.  n – n = n – n Theorem (for any number)
2. n = n + 1 Assuming n to be the largest number
3. n – n = n – (n+1) (=E) 1, 2
4. n – n = 0 Theorem
5. 0 = n – (n+1) (=E) 4, 3
6. 0 = (n+1) – n Commutativity, 5
7. ((n+1)-n)×(b-a)/((n+1)-n)=((n+1)-n)×(b-a)/((n+1)-n) Theorem 
8. (0×(b-a)/((n+1)-n) = ((n+1)-n)×(b-a)/((n+1)-n) (=E) 7, 6
9. 0×(b-a)/((n+1)-n) = 0 Theorem
10. 0 = ((n+1)-n)×(b-a)/((n+1)-n) (=E) 8, 9
11. ((n+1)-n)×(b-a)/((n+1)-n) = b – a Theorem
12. 0 = b – a (=E) 10, 11
… 18. a = b by some Theorems for “+”, “–“ �

• A logic with unrestricted (=E) so yields a=b for any numbers! 
[Remember the restriction of (=E) in Chap. 6; see UL4 in Chap. 20]



p p p ∧¬∧¬∧¬∧¬∧¬∧¬∧¬∧¬∧¬∧¬∧¬∧¬ ppp
Manuel Bremer
Centre for Logic,
Language and
Information

Inconsistent Arithmetics (VII)

• Mortensen choses RM3# as basic system and finitizes it by 
substituting for a number n the number n modulo some m. Thus the 
domain becomes {0, 1, 2, ... m-1}

• The resulting arithmetic RM3m is complete, non-trivial and decidable.
• RM3m is axiomatisable by adding to RM3# the axioms:

| 0 = m

and all instances of the following axiom scheme for n ∈ {0, 1, ... m-1}:

| (0 = n ↔ 0 = 1).

• The approach "modulo some m" has at least the same deviant results 
than the heap models mentioned before: In RM35 we have  4 + 2 = 6 
(since RM35 is complete, i.e. has all theorems of N) and 4 × 6 = 4 
(since "6" denotes 1). And the approach "modulo some m" has these 
deviant sentences for some known numbers!



p p p ∧¬∧¬∧¬∧¬∧¬∧¬∧¬∧¬∧¬∧¬∧¬∧¬ ppp
Manuel Bremer
Centre for Logic,
Language and
Information

Finitization 
• Arithmetic is constructed thus as a finite theory. One can generalized 

the steps of this procedure to apply it to other mathematical theories.
• Van Bendegem distinguishes the following steps:

(i) Take any first-order theory T with finitely many predicates. Let M 
be a model of T.
(ii) Reformulate the semantics of T in a paraconsistenf fashion (i.e. the 
mapping to truth values and overlapping extensions of P+ and P-).
(iii) If the models of M are infinite, define an equivalence relation R 
over the domain D of M such that D/R is finite.
(iv) The model M/R is a finite paraconsistent model of the given first-
order theory T such that validity is at least preserved.

• The restriction to theories with finitely many predicates is no real 
restriction in any field of applied mathematics or formal linguistics, 
since no physical device (be it human or machine) can store a non-
enumerable list of basic predicates.

• [Van Bendegem then hints at finite version of the theory of integers 
and the theory of rational numbers.]
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Paraconsistent Löwenheim/Skolem 
• The Löwenheim/Skolem-Theorem is one of the limitative or negative 

meta-theorems of standard arithmetic and FOL. It says that any theory 
presented in FOL has a denumerable model. This is strange, since 
there are first order representations not only of real number theory (the 
real numbers being presented there as uncountable), but of set theory 
itself. Thus the denumerable models are deviant models (usually 
Herbrand models of self-representation), but they cannot be excluded. 
[They can be excluded in some 2nd order semantics for 2nd order set and 
number theory, see (Shapiro 1991).]

• Given the general procedure to finitize an existing mathematical first 
order theory using paraconsistent semantics, there is a paraconsistent 
strengthened version of the Löwenheim/Skolem-Theorem:

Any mathematical theory presented in first order logic has a
finite paraconsistent model.
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Finite Inconsistent Arithmetics –
Assessment 

• A mathematics that does not committ us to the infinite is a nice thing 
for anyone with reductionist and/or realist leanings.

• As far as we know the universe is finite, and if space-time is (quantum) 
discrete there isn't even an infinity of space-time points.

• The largest number may be indefinitely large. So we never get to it 
(e.g. given our limited resources to produce numerals by writing
strokes).

• If there is a largest number n there is the corresponding inconsistent 
arithmetic Nn. We can presuppose Nn being our arithmetic. Since N and 
Nn agree on all finite and computational mathematics it is hard to see 
whether we lose anything important at all by switching to Nn.

• Since we have paraconsistency anyway for other reasons, we get this 
finitism for free, it seems. So why not take it? In as much as Nn is 
correct no correct reasoning trancends the finite. Hilbert wouldn't have 
rejoiced, probably, since Nn of course is inconsistent itself.

• The drawback of all this is, of course, the problem of an ontology of 
inconsistent entities – at least if you are a realist. [see Chap. 17]
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LFI-Based Inconsistent Arithmetic 
• Benassi and Gentilini (2003) have developed a paraconsistent 

provability logic based on a paraconsistent arithmetic that is an 
extension of a sequent version of the LFI-system bC [see Chap. 8].

• The system PCA consists of axioms:
- defining the primitive recursive functions, 
- for "=" (i.e. reflexivity and functionality of "=", as well as 
substitutivity of identicals within primitive recursive functions),
- defining each numeral as the successor of another, starting with "0"; 
these axioms are supplemented by a rule of induction. By this PCA is 
recursively axiomatized.

• Given that standard Primitive Recursive Arithmetic, PRA, is non-
trivial and negation consistent, so is PCA, since any of its proofs is 
available in PRA. For atomic formulas the systems are even identical.

• This means that m=n is not provable in PCA for different numerals. 
Thus it is not a finite arithmetic like the ones we dealt with before. For 
one and the same numeral m, however, we can have without 
trivialization: ∅ ||-(m = m ∧ m ≠ m)
["||-" being the sequent symbol again.]
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LFI-Based Inconsistent Arithmetic (II)
• That

| PCA∅ ||-(m = m ∧ m ≠ m)
does not trivialize the system means that PCA allows for 
objects/numbers that are (also) not identical to themselves. The 
presense of the contradiction with respect to m=m does not lead to 
triviality, exhibiting the paraconsistent character of PCA.

• If P( ) is any arbitrary open formula and á, é any closed terms that 
represent numbers, then PCA does not have substitution of identicals, 
i.e.

| / PCA∅ ||-(á=é ⊃ (P(á) ≡ P(é))
neither does this hold in sequent form.

• PCA as a theory shows the pecularities of bC [cf. Chap. 8], it is 
interesting for us since Benassi and Gentilini use it to introduce a 
provability predicate the properties of which can be compared to a 
standard provability predicate [see Chap. 13]. A provability predicate 
for PCA can be expressed within the system itself, because it contains 
enough of the primitive recursive functions and so – by arithmetization 
of its syntax – can represent the provability relation within itself.
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Further Perspectives 
• If there are inconsistent versions of more elaborated mathematical 

fields like the calculus one may draw some general philosophical
conclusions:
(i) If there are corresponding inconsistent versions of these 
mathematical theoris with comparable strength to the original theories 
then consistency is not the fundamental mathematical concept, but 
functionality (of the respective basic concepts) may well be. As
Mortensen sums up:

[T]he fact that the same functional structure can underlie inconsistent, 
incomplete, or classical theories suggests that the functional aspects of 
mathematics are more important than squabbles at the sentential level 
over [Explosion], inconsistency, incompleteness, etc. 

(ii) If the justification of mathematics depends on its applicability
and the inconsistent versions are of comparable applicability then they 
are justified not just as mathematical theories, but even in the wider 
perspective of grasping fundamental structures of reality; there no 
longer will be available the argument from mathematical describability 
to the consistency of the world.
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Questions

• (Q1) Nn is decidable – although the procedure maybe quite 
involved and beyond our limited physical resources.
Why? Why is it also finitely axiomatisable?

• (Q2) Given that provability is representable in Nn and given
that Nn is decidable, and given a representation of truth,
why is the Gödel sentence for Nn

(γ) ¬B(γ)
provable, as well as its negation? 
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Excercises

• (Ex1)
• (Ex2)
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Further Reading

• The basic – and only – monograph on inconsistent mathematics is: 
Mortensen, Chris. Inconsistent Mathematics. Dordrecht/Boston/ 
London, 1995.

• For R# see: Meyer, Robert. "Relevant Arithmetic", Bulletin of the 
Section of Logic of the Polish Academy of Science, 1976, pp. 133-37.

• Graham Priest wrote a couple of papers dealing with inconsistent
number theory: (Priest 1994, 1994a, 1996a, 1997).

• On the use of arithmetic in meta-logic and the corresponding results 
see (Boolos/Jeffrey 1989).

• On the infinite in general, large cardinalities and their role and history 
in set theory see (Lavine 1998) and (Moore 1990).

• A statement of paraconsistent finitism is: van Bendegem, Jean Paul. 
"Strict, Yet Rich Finitism", in:Wolkowski, Z. (Ed.) First International 
Symposium on Gödel's Theorems. Singapore, 1993, pp. 61-79.


